Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kasthuri Balasubramani, ${ }^{\text {a }}$ Packianathan Thomas Muthiah ${ }^{\text {a * }}$ and Daniel E. Lynch ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail:
tommtrichy@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.130$
Data-to-parameter ratio $=8.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Amino-4,6-dimethylpyrimidine-4-hydroxybenzoic acid (1/1)

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, the 2-amino-4,6dimethylpyrimidine and 4-hydroxybenzoic acid molecules link together via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form an eight-membered $R_{2}^{2}(8)$ ring. Further hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions result in the formation of a threedimensional network.

Comment

The crystal structures of various aminopyrimidine carboxylates (Hu et al., 2002) and cocrystals (Chinnakali et al., 1999) have been described. From our laboratory, the crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethylpyrimidine monohydrate (Panneerselvam et al., 2004) and 2-amino-4,6-dimethylpyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005) have been reported. In this paper, the hydrogen-bonding patterns in the title compound, (I), are described.

(I)

The asymmetric unit of (I) contains a 2-amino-4,6dimethylpyrimidine (AMPY) molecule and a 4-hydroxybenzoic (4-HBZ) acid molecule (Fig. 1). Both species are neutral, thus (I) is an adduct rather than a molecular salt. Atoms O 2 and the $-\mathrm{N}_{2} \mathrm{H}_{2}$ group act as hydrogen-bond donors to atoms N1 and O3, respectively, to form an eight-membered ring, which has the graph-set notation $R_{2}^{2}(8)$ (Etter, 1990; Bernstein et al., 1995). This type of interaction has been observed in the crystal structures of other 2-aminopyrimidinecarboxylic acid adducts (Lynch \& Jones, 2004).
The second H atom of the 2-amino group links to an O 2 atom in an adjacent molecule via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond, and one of the C atoms (C11) of 4- HBZ is hydrogen bonded to O 3 via a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction to form a ring having graph-set notation $R_{2}^{3}(8)$, leading to the supramolecular chain shown in Fig. 2. Hence, O3 acts as a bifurcated acceptor. The 4-HBZ hydroxy (O1) group is hydrogen bonded to pyrimidine atom N 3 via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interaction, to form a chain as shown in Fig. 3.

Aromatic $\pi-\pi$ interactions between the pyrimidine ring of AMPY and the benzene ring of $4-\mathrm{HBZ}$ are also observed in

Received 23 May 2006
Accepted 10 June 2006
\qquad

Figure 1
ORTEPII（Johnson，1976）view of the asymmetric unit of（I），showing 50% probability displacement ellipsoids．Dashed lines indicate hydrogen bonds．

Figure 2
A view of the supramolecular chain in（I）．Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted． ［Symmetry codes：（ii）$x,-y, \frac{1}{2}+z$ ；（iii）$x,-y, z-\frac{1}{2}$ ．］
（I）．The perpendicular separation is $3.552 \AA$ ，and the centroid－ to－centroid distance is 3.660 （9）\AA ．The slip angle（the angle between the centroid－to－centroid vector and the normal to the plane）is 19.86° ．These values are typical for aromatic $\pi-\pi$ stacking interactions（Hunter，1994）．

Experimental

Hot methanol solutions（ 20 ml ）of 2－amino－4，6－dimethylpyrimidine （ 30 mg ，Aldrich）and 4－hydroxybenzoic acid（ 32 mg ，LOBA Chemie， India）were mixed and warmed over a water bath for a few minutes． The resulting solution was allowed to cool slowly at room tempera－ ture．Crystals of（I）appeared from the mother liquor after a few days．

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$
$M_{r}=261.28$
Monoclinic，$C c$ 。
$a=9.0693$（3）\AA 。
$b=11.1141$（4）\AA
$c=12.6080$（5）\AA
$\beta=102.916(2)^{\circ}$
$V=1238.70(8) \AA^{3}$

Data collection

Bruker－Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction：multi－scan （SORTAV；Blessing，1995）
$T_{\text {min }}=0.980, T_{\max }=0.980$

$$
Z=4
$$

$D_{x}=1.401 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$（2）K
Cube，colourless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

4983 measured reflections 1419 independent reflections 1360 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\max }=27.5^{\circ}$

Figure 3
A view of the hydrogen－bonding patterns in（I）．Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted．［Symmetry code：（i） $1+x,-y, z-\frac{1}{2}$ ．］

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0826 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.130$
$S=1.34$
1419 reflections
177 parameters
H －atom parameters constrained
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.97 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.93 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.93$ e A
Extinction correction：SHELXL97
Extinction coefficient： 0.171 （13）

Table 1
Hydrogen－bond geometry（ $\AA \AA^{\circ}$ ）．

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots{ }^{\mathrm{N}} 3^{\mathrm{i}}$	0.82	1.94	$2.742(3)$	167
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.90	$2.711(3)$	173
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.86	2.00	$2.843(3)$	168
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots 2^{\text {ii }}$	0.86	2.56	$3.229(3)$	135
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{\text {iii }}$	0.93	2.55	$3.181(3)$	126
Symmetry codes：（i）$x+1,-y, z-\frac{1}{2} ;$（ii）$x,-y, z+\frac{1}{2} ;$ ；（iii）$x,-y, z-\frac{1}{2}$				

In the absence of significant anomalous scattering effects，Friedel pairs were averaged．All the H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA)$ and refined as riding，with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ ．

Data collection：DENZO（Otwinowski \＆Minor，1997）and COLLECT（Hooft，1998）；cell refinement：DENZO and COLLECT； data reduction：$D E N Z O$ and COLLECT；program（s）used to solve structure：SHELXS97（Sheldrick，1997）；program（s）used to refine structure：SHELXL97（Sheldrick，1997）；molecular graphics： PLATON（Spek，2003）and ORTEPII（Johnson，1976）；software used to prepare material for publication：PLATON．

DL thanks the EPSRC National Crystallography Service （Southampton，England）for the X－ray data collection．

References

Balasubramani，K．，Muthiah，P．T．，RajaRam，R．K．\＆Sridhar，B．（2005）．Acta Cryst．E61，o4203－o4205．
Bernstein，J．，Davis，R．E．，Shimoni，L．\＆Chang，N．－L．（1995）．Angew．Chem． Int．Ed．Engl．34，1555－1573．
Blessing，R．H．（1995）．Acta Cryst．A51，33－38．
Chinnakali，K．，Fun，H．－K．，Goswami，S．，Mahapatra，A．K．\＆Nigam，G．D． （1999）．Acta Cryst．C55，399－401．

organic papers

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hu, M.-L., Ye, M.-D., Zain, S. M. \& Ng, S. W. (2002). Acta Cryst. E58, o1005o1007.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lynch, D. E. \& Jones, G. D. (2004). Acta Cryst. B60, 748-754.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Panneerselvam, P., Muthiah, P. T. \& Francis, S. (2004). Acta Cryst. E60, o747o749.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

